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A two-dimensional vortex pair is commonly generated by pushing fluid down a 
semi-infinite channel by means of an impulsively started piston. The strength and 
separation of the two fully developed vortices strongly depend upon the time history 
of the piston motion. When the piston is impulsively stopped, two secondary vortices 
are formed downstream of the channel ends and interact with the primary pair in 
a fairly complicated way. 

In  the present work we attempt to provide a discrete-vortex model of the process 
of pair formation. The effects of viscosity are assumed to affect only the separation 
process, having negligible influence on the overall flow. I n  the limit of infinite 
Reynolds number, the problem becomes one of inviscid flow, and the separation a t  
the sharp edges is approximated by a Kutta-Joukowski condition, large vortex 
regions being replaced by simple concentrated vortices. The growing vortex sheets 
shed from the edge are represented by a simplified model due to Brown and Michael. 

Present results are able to  account for the failure of the ‘puffing’ technique as well 
as the success of Barker and Crow’s ‘downwash ’ technique in producing vortex pairs. 

Flow-visualization experiments are also reported, and good qualitative agreement 
is found between numerical and experimental results. 

The present model also shows that the presence of secondary vortices drastically 
modifies the trajectories of free vortices as obtained in a previous work due to 
Sheffield. 

1. Introduction 
A two-dimensional vortex pair is commonly generated by pushing fluid down a 

semi-infinite channel by means of an impulsively started piston. The flow separates 
a t  the sharp edges of the channel opening, and two free shear layers are shed which 
roll up into coherent spirals. Thus a vortex pair is formed which moves downstream 
with its self-induced velocity. The strength and separation of the two fully developed 
vortices strongly depend upon the time history of the piston motion. Barker & Crow 
(1977, hereinafter referred to  as BC) succeeded in producing a vortex pair which 
propagated away from the opening when the flow in the channel was forced to 
decrease slowly after the formation of the pair. But they found that, by suddenly 
stopping the piston, vortices were created which appeared quickly to  draw together 
and dissipate. They ascribed this failure to  the inadequacy of the ‘puffing‘ technique 
in supplying the necessary fluid to fill the recirculation cell. 

The generation process can be divided into two parts. First, two vortices are 
formed, one a t  each edge. For an initial short time the growth of each vortex near 
the channel end can be related to  the local form of the attached flow past an isolated 
sharp edge through a similarity law extensively discussed by Rott (1956), Graham 
(1977) and Pullin (1978). Soon, however, this local dependence breaks down as the 
effect of the opposite edge becomes significant and the rolling-up vortex sheet is 
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affected by the overall flow (Pullin 1978; Pullin & Perry 1980). During the second 
part of the process the geometric shape of the generating channel exercises a strong 
influence on the trajectories of the two vortices just formed. 

Sheffield (1977), bypassing the analysis of the generation process, calculated the 
trajectories of an ideal vortex pair near channel openings of different shapes. By using 
conformal-transformation theory and applying Routh’s theorem, he found that the 
two vortices will not travel back into the channel provided that their initial positions 
lie outside a region adjacent to the wall and bound by two limiting trajectories. We 
also infer from Sheffield’s results that vortices do not collide and break up near the 
axis of symmetry only in the case when the distance of the vortex pair from the 
channel edges is very large. 

This may suggest a criterion for obtaining vortex pairs which are able to travel far 
downstream. However, Kelvin-Helmholtz instability of the free layers and transition 
into turbulence may be expected to occur if the generation process takes too long 
a time. On the other hand, if the piston is stopped suddenly, we find that two 
secondary vortices are shed from the separation edges and interact with the primary 
pair in a fairly complicated way (figure 1 ) .  

The latter phenomenon does not occur in BC’s ‘downwash’ technique. Pullin & 
Perry (1980) recently illustrated the growth of a double-layer secondary vortex and 
the formation of a near-wedge vortex pair. Analogies exist between the plane and 
the axisymmetric cases. Maxworthy (1977) and Didden (1979), in their experiments 
on the generation of vortex rings by the ‘puffing’ technique, found that the diameter 
of the ring decreased moving downstream, and suggested that this behaviour was 
caused by the presence of a secondary vortex ring as well as that of the solid walls. 

In the present work we attempt to provide a point-vortex model of the process 
of pair formation and a general extension of Sheffield’s results. 

It is assumed that viscous effects are significant only during the separation process 
and have negligible influence on the overall flow. In the limit of infinite Reynolds 
number, the problem becomes one of inviscid flow, and the separation at the sharp 
edges is approximated by a Kutta-Joukowski condition, large vortex regions being 
replaced by simple concentrated vortices. The growing vortex sheets shed from the 
edge are represented by a simplified model due to Brown & Michael (1954). 

The latter, used by Rott (1956) and Graham (1977), is attractive for its simplicity 
and ability to give good qualitative results. However, as Pullin (1970) and Graham 
(1977, 1980) pointed out, details of the flow near the sharp edge and of the growing 
spiral are not properly represented. 

We apply the above model to study ( a )  the trajectories of two free vortices released 
symmetrically near the channel wall far from the opening of a semi-infinite channel 
when growing secondary vortices are present, and ( b )  the generation of vortices by 
two types of outflow from the channel (‘puffing’ and ‘downwash’ technique). 
Flow-visualization experiments have been performed in order to check the numerical 
calculations. 

2. Theory 
We consider a two-dimensional channel of width 2 0 .  The walls are parallel plates 

of negligible thickness whose ends are two sharp edges of zero internal angle (figure 
1 ) .  Symmetry implies that the axis of the channel is a streamline. Thus, if the axial 
plane is replaced by a wall, the problem is reduced to one where only a single sharp 
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FIGURE 1. The wall geometry. 
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FIGURE 2. Schwartz-Christoffel transformation of the physical z-plane 
to the upper-half [-plane. 

edge is present. We assume a Cartesian coordinate system (x, y) with the origin a t  
the lower edge of the opening and the x-axis coincident with the channel wall as shown 
in figure 2. Choosing D as the unit of length and using a Schwartzxhristoffel 
transformation, the function f given by 

is found such that the interior of the channel in the physical z-plane ( z  = x+iy) is 
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mapped onto the upper half of the complex c-plane ( 5  = g+iq). In particular, the 
salient edge z ,  = 0 is mapped onto the origin of the Y-plane (figure 2). 

2.1. Shefield’s problem 

We first examine Shefield’s problem and calculate the trajectory of a free vortex of 
constant positive (counterclockwise) strength r, approaching the channel opening, 
from a point far ‘upstream’ near the wall. 

The attached flow, associated with the presence of the point vortex, separates at  
the sharp edge and gives rise to the shedding of a vortex sheet. The latter rolls up into 
a concentrated vortex, which we shall refer to as the secondary vortex and assume 
can be represented by a single growing point vortex T,(t) at z,(t) plus a cut joining 
i t  to the edge as in the simplified model first suggested by Brown & Michael (1954). 
In the transformed plane the complex potential W(<) due to the primary and 
secondary vortex and their images is 

where the explicit time dependence has been suppressed for convenience. In order 
to determine the vortex velocity in the z-plane, Routh’s rule must be used. We find 
that, a t  the position zj  of the j t h  vortex, 

The equation of motion of the vortex being shed from the edge can be obtained 
by imposing the condition of zero total force on the vortex plus the cut z,(t) - z,. This 
leads to the following modified zero-force equation (Rott 1956 ; Graham 1977, 1980) 
in the transformed plane : 

wherej = 2 for the present case. 

applying the Kutta-Joukowski condition in the transformed <-plane : 
As in Brown & Michael’s model, the singularity a t  the sharp edge is eliminated by 

The equation of motion for the free point vortex, which is force-free and moves 
with thekuid. is 

The trajectories have been determined by numerical integration of (4)-(6) by means 
of the Runge-Kutta-Gill method. 

The initial position z,(O) of the free vortex is chosen outside the channel (y,(O) < 0) 
and far enough from the edge (x,(O) >> Iyl(0)l) so that the initial vortex path is parallel 
to the wall and the flow induced around the edge is very weak. The growing secondary 
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FIGITRE 3. Sheffiidd's problem. Trajectories of a free vortex obtained with (present theory) or 
without (Sheffield's theory) the presence of a growing secondary vortex. Initial positions: (a )  
z,(O) = 10-0.li; ( b )  z,(O) = 10-0.2i; (c) z,(O) = 10-0.3i; (d )  z , (O) = 10-0.4i; ( e )  z,(0) = 10-0.5. 

vortex is introduced after a very small time interval 6t ,  when the rolling-up process 
has just started very near the sharp edge. The initial values of its total circulation 
T2(St )  and its position z2(Bt) can be obtained by similarity solutions of (4) and ( 5 )  (see 
Graham 1977). 

The integration time step At was chosen so that  the local relative error was less 
than 

Figure 3 shows some of the trajectories of the primary and secondary vortices 
obtained by the above procedure for different initial values of zl(0). 

The striking feature emerging from the results is that  neither of the two vortices 
moves back into the channel. The initial trajectory of the primary vortex is parallel 
to the wall and unaffected by the presence of a weak and almost stationary secondary 
vortex. The latter starts growing very quickly only when the primary vortex travels 
inside a near-edge region of order y,(O). When the two vortices reach the same 
strength. they form a pair which convects away from the sharp edge a t  a large angle 
(of about 30") to the centreline wall along a nearly straight path. Also shown in figure 
3 are the trajectories of the free vortex predicted by Sheffield's theory for the same 
set of initial values of zl. 

2.2.  The problem of the generation of vortex pairs 
The generation of vortex pairs is now investigated. An impulsively started and 
stopped slug flow U ( t )  = t?[H(t) -H( t -  T f ) ]  is imposed in the channel and represented 
in the transformed plane by a source of time-varying strength m(t) = 2U(t ) / t?  a t  the 
point 6 = 1. If the velocity scales on the maximum Aow velocity 0 while D again 
acts a s  the Imgthscale, the complex potential is given by 

(7) 
m 

WdY) = ij& In (Y- 1). 
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As the flow in the channel starts, a vortex sheet is shed from the sharp edge and 
starts to roll up. We use the Brown & Michael model again to describe it.  The strength 
Tl(t) and position zl(t)  of the growing point vortex are obtained from the numerical 
integration of (4) and (5) wi th j  = 1 and of ( 3 ) ,  where q j  is now given by the following 
relationship : 

When the flow has just been set into motion, a flow pattern develops within a small 
region around the end of the channel wall and shows features similar to that of the 
case of singular attached flow past an infinite wedge. 

The complex velocity in this ‘inner’ region may be expressed in the general form 

where u is given by GtP and ti by Dta. The real functions of time u and v describe the 
symmetrical and asymmetrical components of velocity, and are determined by a 
matching condition with the ‘outer’ flow in the form 

~ 

. dW dW, 
lim __ = __ 

z ~ r e  dz dz ’ 

Graham (1977) showed that (4) and ( 5 )  admit a similarity solution. If a, p and 4 are 
zero 

9 1  rl(q - Q 3 6 3 ,  q ( t )  = 0, yl(f) ‘v ( 7 4 8 ;  (1  1 a-c) 

whereas if, for example, at small time ~ & ~ $ - ~ 6 ~ ,  /? = 0 but a = 1,  the solution is 

rl(t) - d Z l t 4 ,  xl(t)  - iLt, yl( t )  = 0. ( l 2 a - c )  

By substituting from the expressions for W and We into (10) one can show that 
the presence of the wall a t  y = 1 gives rise to a weak symmetrical component of 
velocity. 

Thus for (u( < (211 we expect from (1 1) and (12) that, for small t ,  the leading-order 
terms of the solution may be put in the form 

the x-term being of higher order than the y-term. 
Figure 4 shows numerical results which confirm that the above approximation is 

sensi blc. 
At t = T f  the slug flow is impulsively stopped so that the growth of the primary 

vortex is interrupted suddenly, while a secondary vortex starts to  develop. 
In  the numerical approach the primary vortex is then modelled as a free point 

vortex of constant strength r,(T,), and its motion is described by (6). The Brown & 
Michael model is applied to  analyse the growth of the secondary vortex, whose 
strength r2(t) and position z 2 ( t )  are given by (3) - (5) .  

Numerical calculations over a large range of flow durations have shown the 
existence of two different flow regimes. For 71 < 5 the primary vortex, which remains 
in the near-edge region during its growth, and the secondary vortex quickly form a 
pair which approaches the midline wall. After following a fairly straight path they 
spread apart, the first vortex propagating away, the second moving back into the 
channel. For Tf > 5 this pairing process is not present and the trajectory of the 
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FICIJRE 4. Vertical and horizontal position of the primary vortex centre versus time within the 
initial period of the generation process. 

primary vortex is mainly influenced by the midline wall representing the effect of the 
vortices on the other side of the channel. The secondary-vortex growth is weaker than 
in the former regime although its trajectory remains almost unchanged. These flow 
patterns appear in figure 5, where the results of the calculations for different values 
of T, are shown along with the trajectories of the primary vortex for t > T,, obtained 
by assuming rl(t) = rl(T,) and ignoring the existence of the secondary vortex as in 
Sheffield’s theory. 

The ‘puffing’ technique is found to cause a consistent reduction of the distance 
between the fully developed vortex and the midline wall in agreement with BC’s and 
Didden’s (1979) experimental results. This reduction in turn causes finite-core 
vortices either to undergo irreversible changes or, for short T,, to collide; in both cases 
preventing them from propagating far away. In  contrast pairs obtained by BC exhibit 
a separation larger than the opening width, this being due to the ‘downwash’ 
technique, which allows the flow to slowly decelerate and inhibits the growth of the 
secondary vortex. 

The mathematical model developed in this paper can be easily adapted to  study 
the process of BC’s technique. The velocity U(t)  is not instantaneously set to zero 
at t = T,, but allowed to decrease in time in such a way that the basic attached flow 
a t  the sharp edge cancels out the singular velocity component induced by the primary 
vortex. 

So the strength m ( t )  of the source in the transformed plane is assumed to be 
constant for 0 < t < T,, and is calculated for t > T, by requiring that 

Figure 5 shows that for 0 < t < T, the trajectory of the growing vortex is identical 
with that obtained by the ‘puffing’ t,echnique. At t = Tf the feeding cut is suddenly 
eliminated, and for t > T, no more vorticity is shed from the sharp edge because of 
the condition expressed by (14). So no secondary vortex is formed and the primary 
vortex moves freely with the local velocity due to the channel outflow and its image. 
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FIGURE 5. Vortex-pair generation by ‘puffing ’ and ‘ downwash ’ techniques. Prediction obtained 
by the present theory compared with Gheffield’s theory applied to the primary vortex for t > T f  
and with initial positions: (a )  T f  = 1.25, z I ( q )  = -0.21-0.31i; ( b )  Tf = 2.5, z , (T,)  = -0.43 -0.45i; 
(c) q = 5.0, z l ( q )  = -0.88-0.60i; ( d )  T f  = 7.5, z , (T,)  = - 1.37-0.63i; ( e )  = 10.0, 
z,(Tf) = - 1.90-0.59i. 

3. Experiments 
The experimental apparatus, shown schematically in figure 6, consisted of a water 

channel with a rectangular cross-section 2.5 cm high and 1.0 cm wide. At the 
upstream end of the channel the lower wall was joined to the bottom of a reservoir, 
while the upper wall ended with a sharp edge of 5’ internal angle. 

A rectangular piston, driven through a gear-box by a high-torque stepping motor, 
created the basic slug flow. The motor was operated via a logic control circuit, and 
a constant speed could be obtained over most of the piston stroke, providing high 
initial acceleration. The piston was stopped impulsively a t  T f  = OIL,  where 0 is the 
velocity of the piston and L is the displacement. 

The flow details were visualized by blue dye injected near the sharp edge by a 
capillary tube. The motion of the vortices was filmed on a 16 mm coloured cine film 
a t  24 framesls. Runs were performed for Tf = 3.0, 5.5 and 10.0 and R, = 390 and 
1100, where R, = OD/v and v is the kinematic viscosity. The trajectories of the 
primary and secondary vortex cores were obtained by a frame-by-frame analysis of 
the cine film. 

In  figure 7 the vortex trajectories averaged over four different runs are compared 
with the corresponding numerical results. 

As may be seen from figures 8 ( a ,  b )  (plate l ) ,  showing the nearly formed vortex 
pair for T f  = 3.0 and 10.0, the cores of the vortices are not well defined; thus they 
have been inferred by inspection from the observed pattern of the vortex streaklines. 

Several authors investigating the rolling-up process of starting vortices (Pierce 
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FIGURE 6. Experimental set-up. 
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FIGURE 7. Experimental trajectories o f  the primary and secondary vortex compared 
with the present-model prediction 

1961 : Pullin & Perry 1980; BC) have observed the concentration of streaklines around 
a series of apparent rotation centres. This is a salient feature of figure 8 (c). However, 
once the level of vibrations present in the apparatus was reduced, the phenomenon 
disappeared as shown in figure 8 (d ) .  

BC assumed that such a behaviour of the streaklines represents the development 
of ‘discrete vortices’ on the vortex sheet and the start of transition to turbulence. 
They observed that the above pattern is apparently similar to that occurring on a 
free shear layer undergoing Kelvin-Helmholtz instability as observed by Brown & 
Roshko (1974) and postulated that it may be the final stage of the growth of unstable 
disturbances within an annular region surrounding the vortex core where viscous 
diffusion smooths out the vorticity distribution. However, Crow’s (1975) analysis does 
not apply directly to the present flow, since the effects of the outer discrete spiral 
structure of the vortex is not included and starting vortex sheets have been found 
to be stable at least against short-wave disturbances. Two combined stabilizing effects 
are present: the thickness (Dhanak 1981) and the stretching (Moore 1976) of the shear 
layer throughout the rolling-up process. Therefore, when short waves exist within the 
shear layer, they remain bounded for all time and a great deal of caution must be 
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FIGURE 9. Photos of dye in water showing the rolling up  of the free shear layer generated by 
smooth wall separation of the boundary layer underneath the primary vortex. 
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experimental results 

FIGURE 10. Experimental trajectories of the primary vortex and of the core of the rolling-up 
shear layer generated by smooth wall separation of the boundary layer. 

exercised in interpreting the streakline behaviour (Pullin & Perry 1981). Hama (1962) 
analysed the case of a shear flow perturbed by an unamplified travelling sinusoidal 
wave. He showed that the streakline that emerges from the critical layer always 
appears to roll up regardless of the true nature of the superposed perturbation. On 
the basis of the previous remarks we may conclude that the presence of discrete 
vortices cannot be positively identified, and transition to turbulence does not occur. 

The experimental results did not show any appreciable Reynolds-number depend- 
ence, and they were found to be in reasonable quantitative agreement with 
potential-flow theory. This works quite well provided that the correct circulation 
distribution is maintained. 

The formation of vortex pairs obtained by ‘puffing’ fluid out of a symmetric 
channel is fully represented by the present experimental apparatus. However, the 
presence of a midline wall on which a laminar boundary layer grows with thickness 
O[(v t )$]  may affect the overall flow. Indeed, when the primary and secondary vortex 
start spreading apart, the boundary layer separates and two cells of recirculating flow 
appear to move along the wall underneath the vortices. The largest eddy is found 
to occur to the right of the primary vortex (figure 8 b ) .  It develops very rapidly and 
leaves the wall when the local thickness of the boundary layer grows dramatically. 

Then the eddy is ejected into the inviscid region, where i t  is rapidly convected 
away, leaving behind a free shear layer shed from the separation point at the wall. The 
latter rolls up into a strong eddy, which interacts with the primary vortex and causes 
it to move away from the midline wall as shown in figure 9. The displacement effect 
is easily depicted from the trajectory of the primary vortex (figure 10). The above 
observations are fully in agreement with Harvey & Perry’s (1971) wind-tunnel 
experimental results and with Walker’s (1978) numerical predictions. They also 
confirm the implications of Saffman’s (1979) inviscid theory. 

4. Conclusion 
The Brown & Michael (1954) model appears to describe satisfactorily the generation 

process of two-dimensional vortex pairs obtained by pushing fluid down a semi-infinite 
channel. 
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Numerical results showed that the trajectories and the persistency of the just- 
formed pair strongly depend upon the presence of secondary vortices, which also 
explain the failure of the ‘ puffing ’ technique as well as the success of the ‘ downwash ’ 
technique. 

A quantitative comparison between theoretical and experimental trajectories of 
pairs obtained by the ‘puffing’ technique showed a fairly good agreement, till the 
stage when a bouncing effect is produced which is caused by the separation of the 
wall boundary layer and the formation of a free shear layer. 

The authors are grateful to Dr M. R. Dhanak, Dr J. M. R. Graham and Dr 
G. Seminara for their advice and discussion on various issues arising from the work. 
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